Kogi Iron Limited. (‘Kogi’, ‘KFE’ or the ‘Company’) is an ASX-listed mineral exploration and development company currently advancing its 100% owned Agbaja Integrated Iron Ore and Cast Steel Project (‘Agbaja’) in the Kogi State of Nigeria.

The Agbaja Project is located 15km northwest of the city of Lokoja in Kogi State, and 165km south west (via highway) from Nigeria’s capital city of Abuja. The Agbaja Project is uniquely positioned, proximal to existing, under-utilised infrastructure including road, navigable river and power suitable to commence a major steel project.

The Agbaja Plateau hosts an extensive, shallow, flat-lying channel iron deposit (‘CID’) with a Probable Reserve of 205Mt at a grade of 45.7% iron (Fe), estimated in accordance with the JORC (2012) code. Total Mineral Resources are 586Mt at a grade of 41.3% Fe with the majority classified as Indicated: 466Mt at 41.4% Fe and Inferred: 120Mt at 41.1% Fe.

In January 2017, the Company announced its intention to develop an integrated cast steel plant utilising the company owned iron ore deposit and nearby coal and limestone sources. The results of a laboratory scale test on the iron ore demonstrated that it could be converted to a steel product suitable for electric arc furnaces.

In late January, Kogi’s Community Development Program Agreement (‘CDA’) was also approved by the Federal Government of Nigeria.

In March 2017, Kogi was granted two mining licenses covering an area of 90.7km² and containing the 586Mt of Indicated and Inferred resources. In November 2017, the Nigerian Ministry of Mines and Steel Development granted the Company an additional mining lease covering some 4km². All leases are valid for a renewable period of 25 years.

In October 2017, SD Capital Advisory Limited and GKB Ventures Limited were engaged to secure debt funding for the Project as well as equity finance to complete the DFS and Project financing.

Agbaja is ideally positioned to take advantage of favourable, low-cost Export Credit Agency (‘ECA’) Funding. Initial feedback from multiple ECAs is positive, revealing significant appetite. Securing ECA support significantly reduces political and project risk – debt investors are covered through ECA insurances providing in addition a ‘halo effect’ for equity investors. Sovereign backed ECA funding is aligned with equity investors – all parties benefit if the project succeeds.

A Definitive Feasibility Study is currently underway to determine the economic viability of the project and to support the financing of an integrated steel plant. In November 2017, the Company commenced a Pilot Plant Test Program on a large bulk sample to demonstrate the process in a continuous batch mode. As of March 2018, the testwork remains on schedule for completion in May 2018, with subsequent report compilation completed by end June 2018.
Aim and scope of Information Note

The aim of this document is to provide the reader with an understanding of KFE’s structure, assets, current development and exploration status, as well as plans for future development. The report provides an in-depth review of the Company’s 100% owned Agbaja Integrated Iron Ore and Steel Project, located 150km south of the national capital of Abuja in Nigeria.

The Project has not been visited by the Author. This report is based on publicly-available information, and information provided by KFE management.

Units used in this report include: hectares (ha); kilometres (km); metres (m); millimetres (mm); above sea level (asl); metric tonnes (t); grams (g); litres (L); pounds (lbs); tonnes per year (tpa); billion (BN); million (M); thousand (k); Australian dollars (A$); US dollars (US$).
Introduction

Figure 2: Location of the Agbaja project, Kogi State, Nigeria.

Source: KFE

Project Ownership and Mineral Title

Kogi Iron Ltd. (‘Kogi’, ‘KFE’ or the ‘Company’) is an ASX-listed mineral exploration and development company currently advancing its iron ore properties in Kogi State in southern Nigeria. The Company, through subsidiary company, KCM Mining Limited (‘KCM’) (Company number 753880), holds a 100% interest in Mining Leases ML24606, ML24607 and ML25376 and retains its interest in Exploration licences EL14847 and EL16998, covering an area of 156km² on the Agbaja Plateau. These can be viewed through the Nigerian Ministry of Mines and Steel Development portal: https://gisportal.minesandsteel.gov.ng/MMSDGeoMiningInvestor/

Agbaja Project Summary

The Agbaja Project is located 15km northwest of the city of Lokoja in Kogi State, and 165km south west (via highway) from Nigeria’s capital city of Abuja. The Agbaja Project is uniquely positioned, proximal to existing, under-utilised infrastructure including road, river and power suitable to commence a major steel project.

The Agbaja Plateau hosts an extensive, shallow, flat-lying channel iron deposit (‘CID’) with a Probable Reserve of 205Mt at a grade of 45.7% iron (Fe), estimated in accordance with the JORC (2012) code.

Total JORC (2012) Mineral Resources are 586Mt at a grade of 41.3% Fe with the majority classified as Indicated: 466Mt at 41.4% Fe and the balance Inferred: 120Mt at 41.1% Fe.

The Agbaja Mineral Resource is one of the highest grade beneficiable iron ore resources in West Africa, yet the current resource covers only 20% of the Agbaja Plateau area within ML24606 that is considered prospective for channel iron mineralisation. In addition to the Agbaja Mineral Resource, an Exploration Target of 1.8-3.0 billion tonnes at a grade of 32-48% Fe has been estimated for the Company’s Exploration Licences prospective for hosting channel iron deposits.

In January 2017, the Company announced its intention to develop an integrated steel plant utilising the company owned iron ore deposit and nearby coal and limestone sources. The results of a laboratory scale test on the iron ore demonstrated that it could be converted to a steel product suitable for electric arc furnaces.

In late January, Kogi’s Community Development Program Agreement (‘CDA’) was also approved by the Federal Government of Nigeria.

In March 2017, Kogi was granted two mining licenses covering an area of 90.7km² and containing the 586Mt of Indicated and Inferred resources. In November 2017, the Nigerian Ministry of Mines and Steel Development granted the Company an additional mining lease covering some 4km². All leases are valid for a renewable period of 25 years.

In October 2017, SD Capital Advisory Limited and GKB Ventures Limited were engaged to secure debt funding for the Project as well as equity finance to complete the DFS and Project financing.

In November 2017, the Company commenced a Pilot Plant Test Program on a large bulk sample to demonstrate the process in a continuous batch mode.

A Definitive Feasibility Study (‘DFS’) is currently underway to determine the economic viability of the project and to support the financing of an integrated steel plant.
Country Overview: Nigeria

Figure 5: Nigerian flag and coat of arms.

Source: Wiki

Figure 6: Nigeria country map.

Source: Africa Travel Service

Table 1: Economic overview of Nigeria.

<table>
<thead>
<tr>
<th>Currency</th>
<th>Naira (₦) (NGN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange rate</td>
<td>US$1.00: 360 NGN</td>
</tr>
<tr>
<td>(16th March 2018)</td>
<td>1 NGN: US$0.0028</td>
</tr>
<tr>
<td>GDP</td>
<td>US$405.1 BN (2016)</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>US$2,178 (2016)</td>
</tr>
<tr>
<td>Foreign debt</td>
<td>US$15.35 BN (2017)</td>
</tr>
<tr>
<td>Investment</td>
<td>13.36% GDP (2018)</td>
</tr>
<tr>
<td>Unemployment</td>
<td>18.5% (2017)</td>
</tr>
<tr>
<td>Population</td>
<td>186 M</td>
</tr>
<tr>
<td>Population below poverty line</td>
<td>Est. 70% (2017)</td>
</tr>
<tr>
<td>Urbanisation Rate</td>
<td>3.5%</td>
</tr>
<tr>
<td>Forecast 2050</td>
<td>US$6.3 tn (GDP)</td>
</tr>
<tr>
<td>Economy (PwC)</td>
<td>6.6% Real Growth Rate/p.a.</td>
</tr>
</tbody>
</table>

Source: World Bank / BCRP / PwC / www.ey.com

Background

The Federal Republic of Nigeria is located in western Africa, bounded in the north by Niger, in the north east by Chad, in the east by Cameroon, in the west by Benin, and in the south by the Gulf of Guinea, Atlantic Ocean.

The country is divided into 36 states and one Federal Capital Territory, where the capital, Abuja is located; the states are further sub-divided into 774 Local Government Areas (LGAs). The plethora of states, of which there were only three at independence, reflect the country’s tumultuous history and the difficulties of managing such a heterogeneous national entity at all levels of government. In some contexts, the states are aggregated into six geopolitical zones: North West, North East, North Central, South East, South South, and South West. There are six cities with a population of over 1 million people (from largest to smallest: Lagos, Kano, Ibadan, Kaduna, Port Harcourt, and Benin City). Lagos is the largest city in sub-Saharan Africa, with a population of over 21 million in its urban area alone.

Nigeria is located in the Tropics, where the climate is seasonally damp and very humid. Nigeria is affected by four climates which are distinguishable, as one moves from the southern part of Nigeria (Tropical Savannah to Monsoon) to the northern part of Nigeria (Warm semi-arid to desert).

Nigeria is the most populous country in Africa with a population of more than 186 million people. It is Africa’s largest oil producer and oil accounts for 95% of the country’s exports. Because of this reliance on oil, the Nigerian Government is working hard to encourage new forms of investment and the mining sector is one of the highest priority industries.

The country is recognised as one of the fastest growing in the world. Citigroup has forecast Nigeria will grow to become the fifth largest economy in the world by 2050. As part of new economies behind the BRICs (Brazil, Russia, India and China) countries, Citigroup rank Nigeria in the top ten global growth generators (3G) in the next few decades.

Standard Bank has also identified Nigeria as one of a group of countries known as the “MINTs” (Mexico, Indonesia, Nigeria and Turkey) which it expects will replace the BRICs as the fastest growing investment destinations in the world. Standard Bank believes Nigeria has the fastest growing economy of all of the MINT countries, and has the strongest fiscal balance, lowest public debt, and is the only country in the MINT group with a Current Account surplus.

Experts believe that the Nigerian Government’s ability to implement market-oriented reforms such as modernisation of the banking systems and the recent elimination of subsidies (as urged by the International Monetary Fund) have played vital roles in positioning the country for a “take off”.

Investment opportunity among the MINTs is impressive, especially in very vibrant economies like Nigeria, which is currently utilising its huge population potential to attract foreign investors. Recent reports put Nigeria’s foreign direct investment (FDI) at US$8.9BN, which is estimated to account for 16% of Africa’s total FDI. Nigeria is richly endowed with natural resources and Kogi has secured a first mover advantage in the iron ore/steel sector at Agbaja which has the potential to become a significant steel project for the country.

Favourable Fiscal Allowances

- Corporate Income Tax of 30% with a 5- to 7-year tax holiday;
- Iron ore royalty of 3%;
- Import tax 2%;
- Accelerated depreciation and amortization provisions; and
Table 2: Investment grade comparison of West Africa.

<table>
<thead>
<tr>
<th>Country</th>
<th>S&P</th>
<th>Moody’s</th>
<th>Fitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivory Coast</td>
<td>-</td>
<td>Ba3</td>
<td>B+</td>
</tr>
<tr>
<td>Nigeria</td>
<td>B</td>
<td>B2</td>
<td>B+</td>
</tr>
<tr>
<td>Cameroon</td>
<td>B</td>
<td>B2</td>
<td>B</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ghana</td>
<td>B-</td>
<td>B3</td>
<td>B</td>
</tr>
<tr>
<td>Gabon</td>
<td>-</td>
<td>B3</td>
<td>B</td>
</tr>
</tbody>
</table>

Source: Standard & Poor’s, Moody’s and Fitch Ratings. As at March 2018.

Nigeria’s Strategy to Unlock its Economic Potential

In 2017, the Economic Recovery and Growth Plan (“ERGP”) was adopted, promoting industrialization. Key government downstream actions to promote industrial development include:

- Supporting the steel sector through industry protection such as restrictions on the importation of Iron and Steel until self-sufficiency is attained;
- Enforce crude steel and specific finished steel quality limits (e.g. dimensional accuracy, brittleness, etc) through regulation;
- Ensure continued free trade agreements within the ECOWAS region; and

Promote backward integration capabilities for current processors through incentives.

Government and Politics

Nigeria is a Federal Republic modelled after the United States, with executive power exercised by the President and with overtones of the Westminster System model in the composition and management of the upper and lower houses of the bicameral legislature. The President of the Federal Republic of Nigeria is the head of state and head of the national executive of Nigeria. The President of Nigeria is also the commander-in-chief of the Nigerian Armed Forces. The President is elected in national elections to a maximum of two four-year terms. The current President, Muhammadu Buhari, took office on 29th May 2015 as the 15th President of the Federal Republic of Nigeria.

The president’s power is checked by a Senate and a House of Representatives, which are combined in a bicameral body called the National Assembly. The Senate is a 109 seat body with three members from each state and one from the capital region of Abuja; members are elected by popular vote to four-year terms. The House contains 360 seats and the number of seats per state is determined by population.

Law

There are three distinct systems of law in Nigeria:

- Common law, derived from its colonial past and a development of its own after independence.
- Customary law which is derived from indigenous traditional norms and practice, including the dispute resolution meetings of pre-colonial Yorubaland secret societies and the Èkpè and Ọkọ̀nkọ̀ of Igboland and Ibibioland.
- Sharia law, used only in the predominantly Muslim north of the country. It is an Islamic legal system which had been used long before the colonial administration in Nigeria.

The country has a judicial branch, the highest court of which is the Supreme Court of Nigeria.

Mining

In 2007 Nigeria adopted a new mining act (the Nigerian Minerals and Mining Act, 2007), which was followed in 2011 by the Nigerian Minerals and Mining Regulations. Both the mining act and the mining regulations are highly transparent and internationally competitive, the government has positioned itself as a regulator of the mining industry (and not legislated mandatory
government participation), and it allows 100% foreign ownership of Nigerian companies seeking to develop mining projects.

The Nigerian Minerals and Mining Act vests the control, regulation and ownership of all mineral resources in the Federal Government of Nigeria. The Minerals and Mining Regulations and the National Minerals and Metals Policy also govern the sector.

The Ministry of Mines and Steel Development ("MMSD") oversees the mining sector in Nigeria and administers the provisions of the Nigerian Minerals and Mining Act. The Ministry is supported in performing its functions by the following statutory departments:

- Mines Inspectorate Department
- Mines Environment and Compliance
- Mining Cadastre Office
- Artisanal and Small-scale Mining Department.

Nigeria’s current Minister of State for Mines and Steel Development is Hon Abubakar Bawa Bwari. The Director General of the Mining Cadastre, Mr Mohammed Amate, is the most senior public servant reporting directly to the Minister and delegated with the responsibility of promoting and administering the mining industry in accordance with the Act.

Steel Industry

Nigeria has a current estimated steel demand of 6.8Mtpa. There are no primary steel production facilities in Nigeria, with only a third domestically produced, the majority from scrap metal. The balance is imported, up >50% since 2013. **Nigeria imports an estimated US$3.3BN of processed steel** and associated derivatives, representing 80% of the US$4.2BN total metal products imported per year.

There are 30 steel rolling mills in the country with a combined capacity of 6.5Mt/annum. Only 18 are operational, producing about 2.8Mt/annum using 100% scrap metal and hot/cold rolled steel and wire coils.

List of Nigerian Steel Producers and capacity includes but is not limited to:

- Nigerian Foundries Ltd (Foundry) - 500tpa
- African Foundry Limited (Steel maker) - 500,000tpa
- KanIndurator Nigeria Ltd (Rolling mill) - 1,300,000tpa
- Standard Metallurgical Co (Steel maker) - 250,000tpa
- Western Metal Prod' Co (Steel maker) - 700,000tpa
- Stallion Group (Steel maker) - 100,000tpa

The domestic market is expected to grow 7-fold over the next 20 years as Nigeria brings the national infrastructure up towards European standards. The regional export markets represent a strong opportunity and further upside potential. All countries are net importers of steel products. The country can expect an increase in demand for steel in the coming decade driven by industrialization, and urbanisation; the latter currently at 3.5% pa.

Agbaja proposed Stage One circa. 550,000tpa billet Steel production represents less than 15% of current domestic consumption and is likely to be less than 10% on commencement of operations.

Table 3: Table of African true steel use.

<table>
<thead>
<tr>
<th>Africa</th>
<th>2006</th>
<th>2014</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>3,965</td>
<td>8,354</td>
<td>111%</td>
</tr>
<tr>
<td>Angola</td>
<td>1,040</td>
<td>1,773</td>
<td>70%</td>
</tr>
<tr>
<td>Cameroon</td>
<td>229</td>
<td>493</td>
<td>115%</td>
</tr>
<tr>
<td>Egypt</td>
<td>4,942</td>
<td>11,281</td>
<td>128%</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>461</td>
<td>1,686</td>
<td>266%</td>
</tr>
<tr>
<td>Ghana</td>
<td>640</td>
<td>1,204</td>
<td>88%</td>
</tr>
<tr>
<td>Kenya</td>
<td>720</td>
<td>1,847</td>
<td>157%</td>
</tr>
<tr>
<td>Morocco</td>
<td>2,028</td>
<td>3,139</td>
<td>55%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2,090</td>
<td>3,601</td>
<td>72%</td>
</tr>
<tr>
<td>RSA</td>
<td>6,280</td>
<td>5,172</td>
<td>-18%</td>
</tr>
<tr>
<td>Tanzania</td>
<td>451</td>
<td>1,201</td>
<td>166%</td>
</tr>
<tr>
<td>Africa Total</td>
<td>22,846</td>
<td>39,751</td>
<td>74%</td>
</tr>
</tbody>
</table>

Source: World Steel Association
Asset: Agbaja

Figure 13: Location of the Agbaja project, Kogi State, Nigeria.

Source: KFE

Location and Access

The Agbaja Project is located 15 km northwest of the city of Lokoja in Kogi State, and 165km south west (via highway) from Nigeria’s capital city of Abuja. The plateau is well serviced by power, water and gas supply. Investment into State infrastructure has delivered a high quality sealed highway passing through Lokoja, a high voltage powerline traverses the plateau within 3km of the proposed plant site, a gas pipeline runs though Lokoja and water is available from the Niger River and may be sourced in adequate quantities from the plateau ground water supply.

Local Area

There are two registered towns on the plateau and many smaller hamlets accommodating over 3,000 people, including the paramount chief and the community elders. The plateau has a very poor soil profile making farming difficult however, the local community do farm and hunt producing more than they can consume. The development of the Agbaja Project is seen as an opportunity for employment and wealth development for the plateau community. Kogi Iron is committed to sustainable development with a focus on prioritising employment from the local community.

The nearest major city is Lokoja with population exceeding 90,000. It is located to the east of the western plateau on the banks of the Niger River, some 29km from the proposed process plant by road, 15km direct distance. Lokoja is the Kogi State capital housing state parliament and state government offices. The Niger River provides transport, food and connection with the larger cities to the north, east and south. Lokoja is home to schools, hospitals, a university and technical colleges. The local community are traders, smoking fish and selling farming produce. The industry in the area is underdeveloped and focuses on the service sector.

Geology

Regional

The sedimentary lithologies which comprise the Agbaja Plateau are part of a Cretaceous to Tertiary rift and post-rift sequence, Figure 17. These sediments are overlain on a Pan-African metamorphic basement comprising granitoids, quartzofeldspathic orthogneiss and paragneiss, schist and quartzite including meta-BIF and magnetite quartzite. The Agbaja Plateau occurs within the southern Bida Basin along the western margin of the Cretaceous Benue Trough.
Local

The iron oolite/pisolite deposits of the Agbaja, Koton Karfi and Basa plateaus are part of a Campanian to Maastrictian, continental fluvio deltaic to shallow marine sequence of the Agbaja Formation and includes interbedded sandstone and claystone (Akande et al. 2005). This overlies a brackish to marginal shallow marine, sequence of the Patti Formation, a predominantly argillaceous sequence comprising sandstone, siltstone, carbonaceous claystone and shale with an abundance of land derived woody and plant material (Akande et al. 2005, Amimbola 1997). The Patti Formation conformably overlies the coarse-grained sandstone and conglomerate of the Lokoja Formation which rest unconformably on an irregular quartzofeldspathic gneiss basement surface (Akande et al. 2005, Jones 1958). The lithologies which comprise the Lokoja Formation include conglomerate, coarse to fine grained sandstone siltstone.

Magnetite Iron Ore Deposits

Magnetite iron ore deposits generally grade around 25-40% Fe, however the Agbaja Mineral Resource is a unique sedimentary hosted magnetite deposit with a resource grade averaging 41.3% Fe, which with selective mining of higher grade material will provide a feed head grade of 45.7%, ranking it in the top quartile of magnetite projects world-wide with respect to resource grade.

Magnetite deposits are typically found in banded ironstone formations (BIFs), however Agbaja is unique in that it is a channel iron deposit (CID), with only two known similar deposits of this kind in the world. Typical BIF magnetite deposits require large amounts of energy intensive grinding to liberate the iron from its associated natural matrix, however the Agbaja CID material is relatively soft and friable and only requires moderate grinding, simple magnetic separation, and only a coarse grind particle size to liberate the iron. Consequently, mining and processing costs for the Agbaja project are relatively low compared to other magnetite projects.

Agbaja’s estimated total operating costs rank in the bottom quartile when compared to operating costs of all other magnetite projects.
Mineralogy of the Oolite/Pisolite

The first detailed study of the mineralogy of the ironstone deposits was carried out by Jones (1958) as part of the early 1950’s drilling program in the NE of the Agbaja Plateau. The primary mineral comprised goethite including two principal varieties, “a-goethite” and “b-goethite”. The black, sub-metallic a-Goethite formed the majority of the ooliths with the latter dull-brown to near black b-Goethite forming the matrix to the a-goethite ooliths (Jones 1958). Magnetite was common throughout the unweathered and weathered sections of the sequence occurring as fine round granules (<0.005mm in diameter and average ~0.003mm) evenly distributed through the ooliths and groundmass, but more commonly concentrated to form concentric zones in the ooliths or on their rims (Jones 1958). Siderite is abundant in unweathered ironstone with pseudomorphic relics common in the weathered rocks.

Other less common mineral components include: pyrite, irregularly present in the unweathered oolites and as local relict thin bands or irregular patches rich in pyrite within the weathered zone; Chlorite present in both the ooliths and the groundmass; Quartz, generally absent in most of the ironstones but Jones (1958) describes its presence “as discrete lenses or in concentrations of coarse non-oolitic grit or gritty clay in the upper part of the ironstone” which appears to refer to the lateritic overburden. Minor secondary hematite was only present as a thin crust on exposed surfaces of the rock. The presence of phosphorous was assumed to be in a form of cellophane within less weathered lithologies. In the weathered oolites, phosphate was commonly present as cavity filling.

These results were largely supported with the detailed mineralogical work undertaken by Townend and Townend (2013) on drill core (L11-39) from Kogi Iron’s 2011-2013 resource drilling program. From XRD semi-quantitative analyses they identified goethite and magnetite/maghemite as the dominant iron minerals. Goethite is dominant (no magnetite/maghemite was present) within the upper oolitic zones of the drill core (0-8.3m), except for in one sample where siderite was the dominant phase (4.1m). In addition, hematite was identified as a major phase within the upper lateritic zone (0-2m). Samples from the lower oolitic zones (9.1-20.0m) comprise primarily of goethite and magnetite/maghemite. XRD analyses were unable to discriminate these latter phases. Kaolinite was a minor phase present in all samples but more dominant within the top ~13m, and as an accessory/trace phase below this depth. Additional subordinate phases include, quartz, siderite, gibbsite, anatase, ilmenite and a crandallite group mineral (CGM).

Phosphorus bearing minerals include apatite and a crandallite group mineral. Apatite was present as fine grains within siderite in the matrix (interval 4.1-4.2m). A crandallite group mineral was present in samples across a number of intervals as fine discrete grains within ooids and typically contained both calcium and strontium.

Exploration

Historical

The Kogi State contains known deposits of iron ore, gold, silver, coal and base metals. After the Second World War the English explored the Kogi State for mineral wealth, discovering the Agbaja plateau iron ore and progressed to trial mining on the northern flank of the western plateau. The operations were stalled with the independence and the absence of necessary infrastructure to develop a steel manufacturing operation.

The plateau was explored by developing 30 drill holes in the north of EL 12124 from 1952 through 1953 and then remained unexplored until Kogi Iron
Figure 22: RC drilling programme over the Agbaja licence area.

Limited commenced current efficient commercial exploration of the western plateau.

Modern

In 2011, Kogi commenced an initial field program that included profile mapping of cliff sections around the plateau escarpment. The results of this mapping identified the variability in the thickness of the ironstone sequence ranging between 4m to greater than 14m. A series of five test shafts were sunk to source samples for geochemistry and mineralogical work. Four of the shafts encountered the ironstone but ground water conditions prevented these shafts from reaching base ironstone depths.

Figure 23: The results of the initial profile mapping around the escarpment.

Note: Results highlighted the variable thickness of the ironstone sequence. Five shafts were subsequently sunk to further test the thickness variation of the ironstone and source samples for initial geochemical analyses. A N–S to NNW–SSE trending zone of the thickest ironstone sections provided the basis for the selection of the initial resource area.

Figure 24: Upper section of diamond core.

Figure 25: An example of the ironstone profile section.

Note: This is a road cut on the primary access road to the plateau and also provides the best section of the escarpment. Other sections while sheer is typically heavily forested on the scree slopes up to the face.
Figure 2: Regional airborne magnetics. The wide extent of the magnetite/maghemite association through the Agbaja deposits are delineated on the regional airborne magnetic data which are represented by ironstone caped plateaus of Agbaja, Koton Karfi and the Bassa plateaus.

Based on the results from the profile mapping and shafts, a N–S to NNW–SSE trending zone demarcating the thickest mapped sections could be resolved which was considered to reflect a possible channel axis. This provided the basis for the selection of the Resource area covering 14.65km² and was selected to prove up an initial 500 million tonne resource.

A subsequent drilling program carried out through the resource area better defined the thickness distribution of the ironstone sequence and resolved a more complex channel system which comprise a series of generally N–S trending anastomosing channels.

A total of 686 RC holes (16,244m) and 41 PQ diamond core drill holes (866m) twinning RC holes were completed through the resource area with an additional 31 step out RC holes to test the regional continuation. All drilling was undertaken with vertical oriented holes which are perpendicular to the sub-horizontal deposit and therefore test the true thickness of the body.

The Stage 1 Resource area was drilled on nominal 200m x 100m grid with the main lines oriented along 045°. The northeast line orientation was deemed optimal to best accommodate and test for the N–S to NNW–SSE trending channel system and the northwest trending faults and fractures which appear to have had a significant control on the secondary ferruginisation within the oolite/pisolite sequence, particularly along the western margin of the plateau.

Vertical RC drilling (6-inch hole diameter) was conducted using a face-sampling drill bit. RC drill hole depths range from 12.5m to 35.5m with three deeper RC holes drilled to a maximum of 84m for sterilisation purposes. Vertical diamond drilling was conducted using double tube PQ sized conventional 1.6m drill tube (11 holes) and triple tube PQ sized 1.6m drill tube (30 holes) on a converted RC drilling rig. The diamond drill hole depths range from 13.6m to 30.4m.

Figure 2: Drilling completed within the current resource area.

Source: KFE

Logging

All RC drill holes were geologically logged at a sample interval of 1m for lithology, colour, weathering, minerals, magnetism, main particle size and general observations in standard company template using a standard code library. Logging was both qualitative (e.g. lithology description, colour and comments) and quantitative (e.g. measurement of magnetic susceptibility).

Logging of the diamond drill holes included recording of lithology, lithological contacts, weathering contacts, and structural characteristics; dry core photos were taken of all core. Recovery of diamond drilling was recorded on site and averaged 70% (total hole) and 73% for the main mineralised section for the 11 holes drilled with the double tube drill string. The 30 holes drilled with the triple tube drill string attained an average recovery of 78% (total hole) and 84.5% for the mineralised zone.

Sampling

Initial RC drilling (~160 holes) were sampled at 0.5m intervals. These were composited to 1m intervals. The remaining holes were subsequently sampled at 1m intervals. RC samples are weighed and recorded on site with sample weights typically exceeding 20kg before splitting.

All samples were riffle split to 1-2kg then dispatched for sample preparation at ALS Minerals, Ghana. Preparation comprised drying, crushing to <2mm p70%, riffle split sub-sample of 250g, pulverisation to 75μm p85% prior to being shipped to ALS laboratories in Perth for analyses.

Field duplicates and blanks were inserted at a ratio of approximately 1 in 16. Kogi standards (two covering different grades) are inserted at a ratio of approximately 1 in 8.
The diamond core samples taken in approximate 1.5m run lengths. All core was shipped to ALS/AMMTEC laboratories in Perth and 1m interval samples were taken (complete core sections) for analysis. Complete core was crushed in 1m intervals and split for analyses, with crushing to <2mm p70%, riffle split sub-sample of 250g, pulverisation to 75μm p85%. The continuity of core and its 1m interval subdivision for assay are utilised for geological and grade comparison with the twinned RC holes.

Resource/Reserve Estimate (JORC 2012)

As at December 2013, the current mineral resource estimate for Agbaja is 586Mt @ 41.3% Fe, made up of **Indicated: 466Mt@ 41.4% Fe** and **Inferred: 120Mt @ 41.1%** Fe, with a 20% Fe lower cut-off, see Table 4 below. This mineral resource covers approximately 20% of the prospective plateau area within ML24606 and ML24607.

<table>
<thead>
<tr>
<th>Zone A (Laterite)</th>
<th>Tonnes (Mt)</th>
<th>Fe (%)</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>P (%)</th>
<th>Mn (%)</th>
<th>LOI (%)</th>
<th>S (%)</th>
<th>TiO₂ (%)</th>
<th>CaO (%)</th>
<th>K₂O (%)</th>
<th>MgO (%)</th>
<th>(Na₂O) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated</td>
<td>147.5</td>
<td>33.2</td>
<td>24.24</td>
<td>14.77</td>
<td>0.32</td>
<td>0.05</td>
<td>10.40</td>
<td>0.04</td>
<td>0.98</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Inferred</td>
<td>33.9</td>
<td>31.7</td>
<td>26.15</td>
<td>15.04</td>
<td>0.30</td>
<td>0.04</td>
<td>10.30</td>
<td>0.04</td>
<td>0.98</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>181.4</td>
<td>32.9</td>
<td>24.60</td>
<td>14.82</td>
<td>0.31</td>
<td>0.04</td>
<td>10.40</td>
<td>0.04</td>
<td>0.98</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Zone B (Oolitic)	Indicated	318.7	45.2	10.54	10.51	0.92	10.80	0.08	0.25	0.22	0.01	0.08	0.02
	Inferred	86.3	44.7	11.25	10.73	0.87	10.80	0.05	0.26	0.13	0.01	0.07	0.01
Total	405	45.1	10.69	10.56	0.91	0.08	10.80	0.07	0.25	0.20	0.01	0.08	0.02

A + B Combined

Inferred	466.2	41.4	14.87	11.86	0.73	0.07	10.70	0.07	0.48	0.16	0.03	0.08	0.02
Indicated	120.1	41.1	15.45	11.95	0.71	0.06	10.60	0.04	0.46	0.11	0.03	0.07	0.01
Total	586.3	41.3	14.99	11.88	0.72	0.07	10.70	0.06	0.48	0.15	0.03	0.08	0.02

Source: Coffey Mining, PFS

The resource is divided into two domains based on geological, metallurgical and assay information. The first domain, Zone A, is described as laterite in geological logging with 20% < Fe < 40%, low phosphorous values and elevated titanium dioxide values. The second domain, Zone B, is described as oolite/pisolite in geological logging with Fe > 30%. The geological/mineralisation interpretation was developed for Zone A (Laterite) and Zone B (Oolite) and used as hard boundaries (wireframes). Where kaolinised sandstone lenses lay within and between Zone A and Zone B, the lenses were wire framed separately as internal waste.

Table 4: The 2013 full grade Tonnage Resource Estimate for Laterite (Zone A) and Oolitic (Zone B) horizons at Agbaja.

<table>
<thead>
<tr>
<th>Zone A (Laterite)</th>
<th>Tonnes (Mt)</th>
<th>Fe (%)</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>P (%)</th>
<th>Mn (%)</th>
<th>LOI (%)</th>
<th>S (%)</th>
<th>TiO₂ (%)</th>
<th>CaO (%)</th>
<th>K₂O (%)</th>
<th>MgO (%)</th>
<th>(Na₂O) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated</td>
<td>147.5</td>
<td>33.2</td>
<td>24.24</td>
<td>14.77</td>
<td>0.32</td>
<td>0.05</td>
<td>10.40</td>
<td>0.04</td>
<td>0.98</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Inferred</td>
<td>33.9</td>
<td>31.7</td>
<td>26.15</td>
<td>15.04</td>
<td>0.30</td>
<td>0.04</td>
<td>10.30</td>
<td>0.04</td>
<td>0.98</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>181.4</td>
<td>32.9</td>
<td>24.60</td>
<td>14.82</td>
<td>0.31</td>
<td>0.04</td>
<td>10.40</td>
<td>0.04</td>
<td>0.98</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Zone B (Oolitic)	Indicated	318.7	45.2	10.54	10.51	0.92	10.80	0.08	0.25	0.22	0.01	0.08	0.02
	Inferred	86.3	44.7	11.25	10.73	0.87	10.80	0.05	0.26	0.13	0.01	0.07	0.01
Total	405	45.1	10.69	10.56	0.91	0.08	10.80	0.07	0.25	0.20	0.01	0.08	0.02

A + B Combined

Inferred	466.2	41.4	14.87	11.86	0.73	0.07	10.70	0.07	0.48	0.16	0.03	0.08	0.02
Indicated	120.1	41.1	15.45	11.95	0.71	0.06	10.60	0.04	0.46	0.11	0.03	0.07	0.01
Total	586.3	41.3	14.99	11.88	0.72	0.07	10.70	0.06	0.48	0.15	0.03	0.08	0.02

Source: Coffey Mining

It is worthy to note that the contained iron in the reserves is 102.2Mt of iron that could offer a 20-year project life at 5Mtpa steel production.

Table 5: The February 2014 full grade tonnage Reserve Estimate at Agbaja, (Oolite and Magnetic only).

<table>
<thead>
<tr>
<th>Ore Reserves</th>
<th>Tonnes (Mt)</th>
<th>Fe (%)</th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>P (%)</th>
<th>Mn (%)</th>
<th>LOI (%)</th>
<th>S (%)</th>
<th>TiO₂ (%)</th>
<th>CaO (%)</th>
<th>K₂O (%)</th>
<th>MgO (%)</th>
<th>(Na₂O) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable</td>
<td>223.7</td>
<td>45.7</td>
<td>9.98</td>
<td>10.58</td>
<td>0.93</td>
<td>0.08</td>
<td>10.49</td>
<td>0.07</td>
<td>0.25</td>
<td>0.15</td>
<td>0.03</td>
<td>0.08</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Source: Coffey Mining
The Agbaja Formation and the iron mineralisation is laterally and aerially extensive across the Agbaja Plateau and consists of an upper unit comprising beds of ferruginous sandstone and reworked oolite/pisolite material (referred to as the Laterite unit or Zone A) that overlies a sequence of massive ferruginous oolite and pisolite in a ferruginous matrix (referred to as the Oolite unit or Zone B).

Figure 29: Proposed mining areas showing depth thickness of the Oolitic ore and proximity to the plant site.

Figure 30: Agbaja plateau planned mining area.
Mining and Extraction

The Agbaja plateau is located 500km north of the Niger delta and enjoys a tropical climate with 1250mm rainfall occurring during the middle of the year with tropical rain intensity typically less than 90mm in any 24-hour period. The distinct dry season and wet season provides excellent conditions for open pit mining during 8 months of the year with due care required during the wet season to maintain production and delivery.

The 2014 reserves are located with two open pit areas. A Mining Plan will be developed as part of the Definitive Feasibility Study and this may see Mining Area 1 (MA1 6.0km²) exploited first with close proximity to the plant site and less pre-stripping required and higher grades over consistent widths offers a lower risk commencement to operations. The Oolitic ore zone is expected to free drain and provide dry under foot conditions for mining during the wet season. There will be pockets of perched water that will require pumping as the basement sandstone is considered to have reduced permeability. Of particular note is that the new process will see the laterite processed along with the Oolitic ore and the initial indicated feed grade remains above 45%.

The mining method to be used is expected to involve the following: clear and grub, make timber available to locals, collect seeds for future rehabilitation, remove and windrow stack the laterite, remove and separately windrow stack for the bleached zone. This mining will be undertaken by front end loaders or excavators and articulated dump trucks or equivalent. The ore is expected to be mined using excavators and articulated rear dump trucks, the dump trucks will initially feed the tip point at the plant.

When ore is mined out the bleached material will be placed in the mined-out area along with the plant tailing and these will be covered with the remaining laterite material not stockpiled for future processing.

Nigeria has a mature civil engineering industry with less expertise in mining, however there is substantial quarrying expertise and the contractors have strong representation in neighbouring countries where modern open pit mining has been conducted for more than 30 years. Kogi Iron has conducted prequalification for mining contractors and found suitable capability locally and regionally.

Coal and Limestone Supply

The steel production is expected to require approximately 1.1tonne of coal and 0.1 tonne of limestone to produce one tonne of steel. Kogi State has an abundant supply of coal and limestone within 70km to meet the requirements of the operations. Three coal producers are located within 50km of the site.

Each producer of coal is able to provide 100% of Agbaja requirements. One producer has over 500Mt of proven reserves of coal and sufficient limestone to meet Agbaja requirements. Fluxes and minor reagents will be sourced locally and when not available can be delivered in containers to the site.

While Nigeria produces significant natural gas for export there is no distribution network that serves the Lokoja area of the Kogi State. It is anticipated that it will take at least five years for any distribution network to be established. The volumes required prohibit trucking of natural gas to the operations. Thus, steel production utilising coal is the preferred energy source required for the Agbaja Steel Project. Local coal is available in adequate quantities within 60km from site.

Processing and Beneficiation

Kogi's Direct Reduced Iron ("DRI") Plant could produce high quality steel billets for the Nigerian domestic market. The facility will be constructed 5km away from Kogi's iron ore deposit at Agbaja, using simple, low-cost, proven technology with “off the shelf equipment”. Processing and beneficiation

Figure 31: Agbaja process plant location.

Figure 32: KCM geologists investigating the mining area.
testwork completed by ALS, Mintek and Tenova has defined a well understood process pathway.

Once the Run-of-Mine ("ROM") iron ore has been extracted using simple excavators and dump trucks, the ore will initially undergo crushing, screening and high pressure washing to remove the clay-rich alumina. This is then screened into coarse material and fines. The washed off clay is sent to a settling pond before being used as backfill to rehabilitate the mine.

Subject to results from testwork activities undertaken in FY18 and the completion of the Definitive Feasibility Study, it is currently planned that the coarse ore, coal and limestone are directly fed into four rotary kilns, whilst the fines are ball-milled and fed to a pellet plant before subsequently going to the rotary kilns. This stage results in the production of sponge iron (85% to 90% Fe) and non-magnetic, inert waste which can be used as backfill or for brick making.

The sponge iron is magnetically separated with the magnetic component going to a smelter for further processing. At this stage, the sponge iron has a relatively high amount of impurities and carbon which is then corrected at the next stage using an oxygen lance to produce steel that meets international standards.

To remove impurities and optimise carbon content levels before producing steel billets, the sponge iron is fed into an electric arc furnace. The application of an oxygen lance smelter effectively drives off the impurities (e.g. phosphorous), creating a minor amount of inert slag which can be used in construction. The target levels are: for Fe >95%, Phosphorous <0.03%, SiO2 <2%, Al2O <2% and Mn <0.01% and the carbon levels can be optimised for hardness of steel requested by purchasers.

The molten pig iron is then poured into a water cooled, continuous casting billet steel cast producing standard European billets of 155mm x 155mm x 1500mm (size may vary).

Waste heat gases produced during the DRI cycle are recovered from the rotary kilns and passed through a 35MW steam turbine. Power generated will be used for the plant, with any excess supplied to the local and national grid. The waste gases are then scrubbed and filtered before being released.
Table 7: Billet steel likely product specification.

<table>
<thead>
<tr>
<th>Element</th>
<th>Units</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Fe %</td>
<td>>95</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>P %</td>
<td><0.03</td>
</tr>
<tr>
<td>Silica</td>
<td>SiO₂ %</td>
<td><2.0</td>
</tr>
<tr>
<td>Aluminium Oxide</td>
<td>Al₂O₃ %</td>
<td><2.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn %</td>
<td><0.01</td>
</tr>
<tr>
<td>Carbon</td>
<td>C %</td>
<td>>0.7</td>
</tr>
</tbody>
</table>

Source: KFE

Environmental and Social Impact

The Environmental and Social Impact Assessment ("ESIA") has shown that there are no material environmental or social impacts for the development of the Project. A Waste Management Plan ("WMP") has been developed to comply with international guidelines. The project will utilise modern, efficient, and cleaner technology in the steel making process, including: an electric arc furnace instead of a blast furnace; 34MW turbines to recover waste heat; and a gas cleaning plant where the waste gases are cleaned, scrubbed, and sent back into the furnace. The WMP integrates the mine waste with the process waste and incorporates a single solution where the tailings from the initial washing stage are impounded on the plateau, and after drying, are returned to the pit as backfill providing re-nitrification and moisture. There are no toxic chemicals used in the production process.

Slag, which is produced in huge amounts, is largely inert, and will be disposed of in landfills or used as construction material such as for roads or brick making. Mine waste water will be used in the rehabilitation of the final site. The current iron rich surface laterites provide a poor soil for agricultural applications, and throughout the life of the mine effort will be directed to improving the land so that crop yields will increase, and commercial agriculture can deliver long-term income to the local community.

The overall assessment of the potential and associated social impacts of the Agbaja Project indicated that it would impact positively on the economy of the stakeholder, Local Government Area and communities, Kogi State and Nigeria generally, and contribute to socioeconomic development within the host communities, resulting in economic empowerment for the indigenes and residents. This would be by way of employment opportunities (inc. contract awards during the construction and operational phases of the project).

The possible impacts of the proposed project on land use, vegetation, wildlife, air, socioeconomic and health can be controlled and ameliorated by following the recommended measures. The Environmental Management Plan (EMP) developed would ensure that the procedures for managing the possible impacts of the proposed project as well as for implementing the Environmental commitments made are developed and maintained throughout the project lifecycle.

KCM consulted directly with The Paramount Ruler, The Maasi of Agbaja, Members of the Council of Chiefs, youth group representatives and the women group representatives as well as establishing a presence in the community to provide an opportunity for discussion and concerns to be raised about the project. During the community consultation process the following issues and concerns were raised:

- Waste management;
- In-migration and loss of community values and community conduct concerns;
- Change of land use resulting in indigenous farmer’s loss of land;
- Improved infrastructure and capacity building;
- Social investment to consider vulnerable groups, such as the elderly, very young and handicapped; and
- Increased employment and trading opportunities.

Kogi Iron and KCM have incorporated into the EMP strategies to mitigate the demographic impacts of the project and address community concerns both short term and long term.

KCM has secured all the environmental and social permits required to allow for the submission of the Mining lease application.
In December 2016, the Community Development Agreement (CDA) was signed. Since then, KCM has been granted Mining Leases ML24606, ML24607 and ML25376, covering the current Resource area.

Current Activities

Testwork Program

In Late October 2017, Kogi commenced a testwork program on a bulk sample of ore from Agbaja at Mintek’s Pilot Plant Laboratory in South Africa. The sample will undergo a sequential testwork flowsheet developed by Kogi for the pilot scale demonstration of the production of billet steelmaking iron (also known as high-quality merchant pig iron).

The scope of the testwork program includes beneficiation, smelting and converting, and is to be conducted by Mintek, a global leader in mineral processing and pyrometallurgy. The work will also include deagglomeration testing to be conducted by Haver Southern Africa. Pelletising, firing and pre-reduction testwork (if required) will be conducted by Torex in Russia.

Mintek proposes to demonstrate the smelting of a pre-determined blend of lumpy and fine Agbaja iron ore concentrate using a 200kVA electric arc furnace with a feed rate of 1 ton per day and converting of the pig iron using an induction furnace that operates in a batch mode with the capacity of 20 kg per batch.

Tenova Pyromet and SGS Bateman will supervise the program, provide technical support and assist Kogi with the development of the flowsheet. The aim of the test work is to definitively confirm the flow sheet for the treatment of Kogi ore to steel billets. There is significant demand both within Nigeria as well as internationally for this product.

The outcome from this test work will be used to define the final design criteria to complete the Definitive Feasibility Study ("DFS") and ultimately to finalise both debt and equity funding for the Project.

Testwork Program March Update

The first stage of testing, Bulk Sample Preparation & Beneficiation, together with mineralogical and bulk chemical analysis of the ore, has been completed. The results of these tests have been positive in showing that using standard crushing and washing the ore does produce an up-graded concentrate suitable for smelting.

Stage 2 Smelting has also been completed. The objective of the Smelting Phase was to evaluate the quality of the product with respect to iron extraction, determine the slag characteristics, evaluate the furnace refractory performance and generate pig iron for the Converting Phase.

The successful results from the Smelting Phase have generated sufficient process information for furnace design and product quality. This builds on the very positive results from the Beneficiation Phase which has allowed Kogi to optimize its Process Flow Sheet for Beneficiation.

Next Phase of the Test Work Program – Converting and Metallisation

• Preparation and shipment of the 200 kg ore sample and the required coal for the Metallization test work at Torex (Russia);
• Preparation of the ore samples for the Haver & Boecker test work in Perth;
• Converting to be conducted by Mintek in South Africa using the pig iron produced in the Smelting Phase.

The Torex test work is to study the metallisation of the sample, including the addition of coal. This work will involve:

a) Mintek preparing 200 kg of scrubbed ore to be shipped to Torex (Russia) for the metallisation test work;
Figure 42: Stream of molten metal pouring into ladle.

Source: Mintek

b) Optimisation by Torex of the quantity of coal and specification for the metallisation test work. Coal samples from the identified coal operations in Nigeria are being prepared for shipment to Torex; and
c) To generate Direct Reduction Iron (DRI) from the scrubbed iron ore concentrate.

The testwork program to be conducted by Mintek will remove the detrimental species such as phosphorous & sulphur and establish the optimum recovery for iron and typical billet steelmaking iron grade.

The Haver and Boeker test work is to evaluate the effectiveness of high pressure washing as an alternative process to compare with scrubbing to remove clay and slimes from the ore.

Following this, a final technical report (including a detailed flowsheet design for the treatment of Kogi ore to provide iron ore feedstock for the production of steel billets) will be produced in Stage 4 Process Modelling and Reporting. The detailed flowsheet will be used to complete the DFS.

The bulk sample Test work remains on schedule for completion in May 2018, with subsequent report compilation completed by end June 2018.

Risks and Mitigants

Geo-Political: A slump in oil prices and inadequate policy responses are increasing unemployment and weakening the local currency. Political risk and militancy actions against the backdrop of challenging economic conditions are being addressed through policies initiated in 2016 targeting macro-economic imbalances as well as security agencies equipped to respond appropriately to social conflicts as and when they arise. This implies low to medium geo-political risk.

Market Risk: Historical demand for steel over the past two decades has increased 10x to 3,601kt in 2014, with resilient demand even in challenging geo-political times, implying that demand impairment through geo-political risk is low.

Price: Pricing occurs at import-parity levels and is supported by location and industry policy measures by the government.

FX: Selling price tied to USD and off-shore payment along with local Naira cost base leads to low exposure to FX risk.

Volume: Low risk, as project is import substitution, industrialization is supporting a continuous expansion of domestic demand and the steel sector is enjoying government support.

Construction: Low risk owing to modular off-the-shelf equipment fabricated off-shore by reputable vendors and installed and commissioned by experienced international EPCM contractors.

Raw Material Supply: Captive iron ore source and advanced discussions with local providers of coal and limestone.
Management, Directors and Officers

Non-Executive Chairman and Director: Ian Burston
Dr Burston has more than 30 years of top level experience in Western Australian and international iron ore mining and export sales. He has held executive management and Board positions with some of WA’s largest and most successful mining operations. Dr Burston previously served on the board of African Iron Limited as Chairman and on the board of Fortescue Metals Group Limited. He was also involved in a number of mining services companies as Non-Executive Chairman of NRW Holdings and as a board member of Mincor Resources NL.

Dr Burston has also held major roles in industry associations and local government. He was awarded Citizen of the Year (Industry and Commerce) 1992, Member of the Order of Australia (General Division) 1993, and Honorary Doctor of Science (Curtin) 1995. He is a Fellow of the Institute of Engineers of Australia, the Institute of Mining and Metallurgy and the Institute of Company Directors.

CEO & Managing Director: Martin Wood
Martin started his career at NM Rothschild, Standard Bank and Benfield, working in the resource finance and advisory departments and being responsible for over $2Bn worth of transactions at these institutions.

In 2003 he rowed the Atlantic solo and, on his return, established Vicarage Capital Limited, a UK based brokerage specialising in O&G, precious & base metal focused exploration, development and production stage companies, with assets located across the globe.

Executive Director: Kevin Joseph
Mr Joseph has extensive experience in Nigeria and the West African region. A 27-year resident of Nigeria, with Special Immigration Status, he has invaluable in-country relationships.

Mr Joseph is a former Executive Director of Operations for OANDO Petroleum, one of two major local marketers of petroleum in Nigeria, where he headed up Supply Chain Development in the West African Region, with Executive responsibility for new business development.

Non-Executive Director: Don Carroll
Mr Carroll is a former executive with BHP Billiton with over 30 years of experience in the mining industry, principally overseas in Asia, the United States and West Africa.

During this time, he was responsible for the early development of the Kalimantan coal projects, the marketing of minerals in Asia, including China, and was the President for BHP Billiton in Japan and India. He was also the CEO for the Guinea Alumina project in West Africa.

Non-Executive Director: Michael Tilley
Michael is the Chairman and a founding director of Terrain Capital. He has worked in the accounting and finance industries for more than 45 years and has a broad range of senior advisory and project management experience in all facets of corporate finance. His primary responsibility is the strategic leadership of Terrain Capital’s business. Michael is currently Chairman of Dacland Pty Ltd. He was formerly a director of Elysium Resources Limited, Vision Super Pty Ltd, Industry Fund Management Pty Ltd Investor Advisory, Yarra Valley Water Ltd and South Australian Tourism Commission, Oliver Hume Corporation Ltd and Free Eyre Ltd.
References

1. www.kogiiron.com
2. JORC Report – Preliminary Feasibility Study (PFS) on the Agbaja Project, Nigeria. 27th January 2014.
5. http://xe.com/currencycharts/?from=USD&to=NGN&view=1Y
6. https://www.heritage.org/index/country/nigeria
17. https://www.worldsteel.org/

Copyright and Risk Warnings

Kogi Iron Limited is a corporate client of Smaller Company Capital Ltd. While SCC will not receive compensation for providing fundraising and other services to the Company including the publication and dissemination of Marketing Material. This note should NOT BE treated as independent or impartial research.

Not an offer to buy or sell
This is a note and under no circumstances is to be construed as an offer to buy or sell or deal in any security and/or derivative instruments based on such securities. It is not an initiation or an inducement to engage in investment activity under S21 of the financial services and Markets Act 2000.

Note prepared in good faith
Comments made in this research note represent the current opinions of Smaller Company Capital as of the date of this document and have been arrived at in good faith. No representation or warranty either actual or implied is made as to the accuracy, precision, completeness or correctness of the statements, opinions and judgements contained in this document.

Smaller Company Capital’s and related interests
The analyst who produced this research note, Jeremy Woodgate, is an employee of Smaller Company Capital. The Agbaja Project has been visited by the Author. Smaller Company Capital and/or its employees and/or directors and associates may or may not hold shares and warrants in Kogi Iron Limited and reserve the right to acquire or dispose of such positions in the future.

Information purposes only
This document is purely intended for background information purposes only and this report is furnished on the basis and understanding that Vicarage Capital is to be under no responsibility of liability whatsoever in respect thereof.

Investment Risk Warning
The value of any potential investment made in relation to companies mentioned in this document may rise or fall and sums realised may be less than those originally invested. Any reference to past performance should not be construed as being a guide to future performance.

Investment in small companies, and especially mineral exploration companies, carries a high degree of risk and investment in the companies or minerals mentioned in this document may be affected by related currency variations. Changes in the pricing of related currencies and or commodities mentioned in this document may have an adverse effect on the value, price or income of the investment.

Distribution
This information memorandum is not for public distribution, nor for distribution to, or be used by, private clients. It may only be distributed to persons (or groups of persons), coming within the appropriate exemptions from the requirement to issue a prospectus, apply either individually or collectively.
Disclaimer

This report has been forwarded to you solely for information and should not be considered as an offer or solicitation of an offer to sell, buy or subscribe to any securities or any derivative instrument or any other rights pertaining thereto ("financial instruments"). This report is intended for use by professional and business investors only. This report may not be reproduced without the consent of SCC.

The information and opinions expressed in this report have been compiled from sources believed to be reliable but, neither Smaller Company Capital Limited, nor any of its directors, officers, or employees accepts liability from any loss arising from the use hereof or makes any representations as to its accuracy and completeness. Any opinions, forecasts or estimates herein constitute a judgement as at the date of this report. There can be no assurance that future results or events will be consistent with any such opinions, forecasts or estimates. Past performance should not be taken as an indication or guarantee of future performance, and no representation or warranty, express or implied is made regarding future performance. This information is subject to change without notice, its accuracy is not guaranteed, it may be incomplete or condensed and it may not contain all material information concerning the company and its subsidiaries. Smaller Company Capital is not agreeing to nor is it required to update the opinions, forecasts or estimates contained herein.

The value of any securities or financial instruments mentioned in this report can fall as well as rise. Foreign currency denominated securities and financial instruments are subject to fluctuations in exchange rates that may have a positive or adverse effect on the value, price or income of such securities or financial instruments. Certain transactions, including those involving futures, options and other derivative instruments, can give rise to substantial risk and are not suitable for all investors. This report does not have regard to the specific instrument objectives, financial situation and the particular needs of any specific person who may receive this report.

The value of any securities or financial instruments mentioned in this report can fall as well as rise. Foreign currency denominated securities and financial instruments are subject to fluctuations in exchange rates that may have a positive or adverse effect on the value, price or income of such securities or financial instruments. Certain transactions, including those involving futures, options & other derivative instruments, can give rise to substantial risk & are not suitable for all investors. This report does not have regard to the specific instrument objectives, financial situation and the particular needs of any specific person who may receive this report.

SCC (or its directors, officers or employees) may, to the extent permitted by law, own or have a position in the securities or financial instruments (including derivative instruments or any other rights pertaining thereto) of any company or related company referred to herein, and may add to or dispose of any such position or may make a market or act as principle in any transaction in such securities or financial instruments. Directors of SCC may also be directors of any of the companies mentioned in this report. SCC may from time to time provide or solicit investment banking or other financial services to, for or from any company referred to herein. Smaller Company Capital Limited (or its directors, officers or employees) may, to the extent permitted by law, act upon or use the information or opinions presented herein, or research or analysis on which they are based prior to the material being published.

To our readers in the United Kingdom, this report has been issued by Smaller Company Capital Limited, a firm authorised and regulated by the Financial Conduct Authority. This report is not for distribution to private customers.

This report is not intended for use by, or distribution to, US corporations that do not meet the definition of a major US institutional investor in the United States or for use by any citizen or resident of the United States.

This publication is confidential for the information of the addressee only and may not be reproduced in whole or in part, copies circulated, or disclosed to another party, without the prior written consent of Smaller Company Capital Limited. Securities referred to in this research report may not be eligible for sale in those jurisdictions where Smaller Company Capital Limited is not authorised or permitted by local law to do so. In particular, Smaller Company Capital Limited does not allow the redistribution of this report to non-professional investors and cannot be held responsible in any way for third parties who affect such redistribution. © 2018